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Abstract—Healthcare data explosion and cloud computing
booming have motivated healthcare centers to outsource their
healthcare data and data-driven services to a powerful cloud.
Nevertheless, due to privacy concerns, the data are usually
encrypted before being outsourced, which will degrade the data
utility and make it challenging to implement data-driven services.
Although the multi-dimensional range query over encrypted data,
as one of the most popular outsourced services in eHealthcare,
has been extensively studied, existing solutions still have some
limitations in efficiency, privacy, and practicality. Aiming at this
challenge, in this paper, we design an efficient and privacy-
preserving multi-dimensional range query (PMRQ) scheme. We
first build an R-tree to index the dataset and reduce the R-tree-
based range queries to the multi-dimensional range intersection
problem. Then, by delicately designing a data comparison al-
gorithm and a homomorphic encoding technique, we present
an encoding-based range intersection algorithm. After that, by
employing matrix encryption to protect the privacy of the
encoding-based range intersection algorithm, we design a multi-
dimensional range intersection predicate encryption (MRIPE)
scheme. Based on the MRIPE scheme, we then propose our
PMRQ scheme. Detailed security analysis illustrates that our
PMRQ scheme is privacy-preserving, and experimental results
demonstrate that it is computationally efficient.

Index Terms—Multi-dimensional range query, R-tree, single-
dimensional privacy, eHealthcare, homomorphic encoding.

I. INTRODUCTION

The aging population, digitization of eHealthcare systems,
evolution of wireless networks, and advance of machine learn-
ing have jointly stimulated the exponential growth of the med-
ical data at the healthcare centers [1]–[3]. These accumulated
medical data have been widely utilized to offer various query
services, e.g., range queries, similarity queries [4], and skyline
queries [5], to doctors. Among them, the multi-dimensional
range query, which retrieves data records within a query
range, is highly regarded due to its fast-growing applications
in disease diagnosis and healthcare monitoring [6]. For bet-
ter understanding, we show an example to illustrate multi-
dimensional range queries.

Example 1: Suppose that a medical dataset has four records
with two attributes, i.e., (age and blood glucose), denoted by
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D = {x1 = (38, 138),x2 = (34, 180),x3 = (25, 146),x4 =
(50, 50)}. Let Q = [20, 35] × [120, 150] be a range query,
which aims to retrieve data records, whose age is in [20, 35]
and blood glucose is in [120, 150]. The query result of Q over
D will be x3 = (25, 146).

As the medical data volumes grow, healthcare centers
progressively choose to outsource their medical data and the
multi-dimensional range query service to a powerful cloud.
Taking the privacy into account, healthcare centers usually
encrypt the medical data and outsource the corresponding
ciphertexts to the cloud. However, data encryption will degrade
the data utility and make it challenging to perform multi-
dimensional range queries. Aiming at this challenge, various
schemes [7]–[15] have been reported, but they still have some
limitations in efficiency, privacy, and practicality:
• Search efficiency: Schemes [7]–[9] are inefficient, because

(i) all of them are designed using the computationally expen-
sive cryptographic primitives; and (ii) the search efficiency of
schemes in [7], [8] is linear to the size of the dataset.
• Privacy: Schemes in [7], [9] cannot preserve the query

privacy (i.e., the plaintext of query requests). Schemes in [10]–
[12] leak the single-dimensional privacy, which refers to the
information on which records satisfy the query request in each
dimension. For example, the single-dimensional privacy of
Q = [20, 35] × [120, 150] in Example 1 refers to the private
information that {x2 = (34, 180),x3 = (25, 146)} satisfy Q
in the age dimension. As discussed in [16], the leakage of the
single-dimensional privacy may have a disastrous consequence
on the privacy of query requests and dataset, e.g., leaking the
plaintext information of the entire dataset. As a result, it is
critical to preserve the single-dimensional privacy in multi-
dimensional range queries.
• Practicality: The scheme in [13] is designed in a two-

server model and secure under the non-colluding assumption
between two servers. However, this assumption is too strict in
some practical scenarios. Schemes in [14], [15] are designed
based on the bucketization method, which are impractical
because their query results may contain false positive records.

To address the above challenges, in this paper, we present an
efficient, privacy-preserving, and practical multi-dimensional
range query (PMRQ) scheme under a single-server setting. In
our scheme, since R-tree is widely used to index the dataset
and support multi-dimensional range queries in the database
systems [13], we will first build an R-tree to index the dataset.
Then, we reduce the R-tree-based range queries to the multi-
dimensional range intersection problem, which determines
whether two multi-dimensional ranges P,Q intersect or not,
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i.e., P ∩ Q ?
= ∅. After that, we design a multi-dimensional

range intersection predicate encryption (MRIPE) scheme to
privately check P ∩ Q ?

= ∅. In the following, we discuss two
challenges, which we will face when designing the MRIPE
scheme, together with our countermeasures.

Challenge I: How to efficiently conduct multiple in-
equalities as a whole? Let P = P1 × P2 × · · · × Pd and
Q = Q1× Q2×· · ·×Qd be two d-dimensional ranges, where
Pk = [pk,l, pk,r] and Qk = [qk,l, qk,r] for 1 ≤ k ≤ d. We have

P ∩Q 6= ∅ ⇔ {pk,r ≥ qk,l and pk,l ≤ qk,r}dk=1. (1)

Then, determining P ∩ Q ?
= ∅ is equivalent to deter-

mining whether P and Q satisfy 2d inequalities {pk,r ≥
qk,l and pk,l ≤ qk,r}dk=1. A straightforward method to per-
form 2d inequalities is to separately determine each inequality,
but this method unavoidably causes the single-dimensional
privacy leakage. To avoid this leakage, 2d inequalities are
required to be determined as a whole. That is, an adversary
(i.e., the cloud server in our scheme) is only allowed to know
whether P and Q satisfy the 2d inequalities in Eq. (1) or not.
When P and Q are not satisfied, the cloud server cannot know
which inequalities do not hold. However, to the best of our
knowledge, there is no efficient solution to conduct multiple
inequalities with the single-dimensional privacy.

Countermeasure I: To solve Challenge I, we design a data
comparison algorithm to compare two integers p and q. The
main idea is to represent p and q to vectors {p̂i,pi}ni=1 and
{qi}ni=1, where n is the bit length of values in P,Q. More
details about the vector representation of p and q are provided
in Section IV-A. Then, comparing p and q can be transformed
to an equality test, i.e.,

(i) p < q ⇔ f(p, q) = 1; (ii) p ≥ q ⇔ f(p, q) = 0,

where f(p, q) =
∑n
i=1((

∏i−1
j=1 p̂jq

T
j ) ∗ piqTi ). The equality

test based data comparison algorithm enables us to integrate
the 2d data comparisons in the computation of P ∩ Q ?

= ∅
to one equality test such that we can design an efficient
multi-dimensional range intersection algorithm. After that, we
should consider how to privately compute f(p, q). Then, we
will encounter Challenge II as follows.

Challenge II: How to privately compute the multipli-
cation of multiple vectors? When computing f(p, q) =∑n
i=1((

∏i−1
j=1 p̂jq

T
j ) ∗ piqTi ), the most challenging work is

to privately compute fi(p, q) = (
∏i−1
j=1 p̂jq

T
j ) ∗ piqTi , i.e.,

computing the multiplication of multiple vectors. Although
fully homomorphic encryption techniques [17], [18] can be
naturally used to implement this computation, the compu-
tational costs are prohibitively large. A promising solution
is to use the extended Hill cipher encryption (also called
matrix encryption) in [19], [20] to protect the privacy of the
computation fi(p, q). However, since {p̂j ,pj ,qj} are binary
vectors and even some of them are zero vectors, using the
matrix encryption to encrypt them will suffer from the matrix
rank attack. That is, the attacker can use the rank of ciphertexts
to infer the underlying plaintext data. More details on the
extended Hill cipher encryption and the matrix rank attack
are provided in Section IV-B.

Countermeasure II: To address Challenge II, we design
a homomorphic encoding technique to encode binary vectors
{pj , p̂j ,qj} into non-zero random vectors. Since the encoded
vectors do not have 0, the rank of ciphertexts will not leak the
plaintext data. Hence, our scheme is free of the matrix rank
attack. Besides, the homomorphic property of the encoding
technique can ensure that f(p, q) can be correctly computed.

In summary, our contributions are three folds as follows.
• First, we design a data comparison algorithm to compare

two integers p and q. Then, we present a homomorphic
encoding technique to encode data. Based on them, we con-
struct an encoding-based multi-dimensional range intersection
algorithm, which can efficiently determine whether P∩Q ?

= ∅.
• Second, by employing matrix encryption to protect the

privacy of the encoding-based range intersection algorithm,
we design a multi-dimensional range intersection predicate
encryption (MRIPE) scheme to privately determine P∩Q ?

= ∅.
Based on MRIPE scheme, we propose an efficient and privacy-
preserving multi-dimensional range query (PMRQ) scheme.
• Finally, we prove that our PMRQ scheme is able to pre-

serve the data privacy, query privacy, and single-dimensional
privacy simultaneously. In addition, the extensive experiments
demonstrate that our scheme is computationally efficient.

The remainder of our paper is organized as follows. We for-
malize our system and security models in Section II and recall
the preliminaries in Section III. We introduce some building
block techniques of our scheme in Section IV and propose our
PMRQ scheme in Section V. In Section VI, we analyze the
security of our scheme, followed by its performance evaluation
in Section VII. We review some related works in Section VIII
and conclude our work in Section IX.

II. SYSTEM MODEL AND SECURITY MODEL

In this section, we define the system and security models
considered in our work.

A. System Model

In the system model, we consider a single-server-based
multi-dimensional range query model in eHealthcare, which
involves a healthcare center, a cloud server, and multiple query
doctors, as shown in Fig. 1.

4. Query Result
0. Secret key

Healthcare Center Query Doctors

2. Range Query Request

7RNHQ��
*HQHUDWLRQ

1. Data Outsourcing

Index building 

and encrypting

Cloud Server

3. Range Query

Processing

Fig. 1. System model under consideration

• Healthcare Center (HC): The HC has a multi-dimensional
medical dataset and leverages it to offer the multi-dimensional
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range query service to query doctors. Constrained by the
computing capability, it outsources the dataset and the multi-
dimensional range query service to a powerful cloud. To speed
up the query efficiency and protect the data privacy, the HC
indexes the dataset with an R-tree and outsources the R-tree
to the cloud in an encrypted form.
• Cloud Server: The cloud server possesses abundant com-

puting and storage resources. It stores the encrypted R-tree
that is outsourced by the HC, and offers the multi-dimensional
range query service to query doctors. Concretely, on receiving
a range query request from a query doctor, the cloud server
will search on the encrypted R-tree for records satisfying the
query requests and respond them to the requesting doctor.
• Query Doctors: In the system, there are many query

doctors, and each one is authorized by the HC with an
authorized key. Authorized doctors can enjoy the range query
service from the cloud server. To protect the privacy of query
requests, doctors are required to send encrypted query requests
to the cloud server.

B. Security Model

Regarding the security model, we assume that the HC is
trusted because it sets up the system and has no incentive to
deviate from the range query service. As for the cloud server,
we assume that it is semi-honest, namely, it sincerely follows
our scheme to offer the multi-dimensional range query service
to doctors but may attempt to deduce (i) the plaintext of dataset
records and query requests; and (ii) the single-dimensional
privacy of range queries. For the query doctors, since they
have been authorized, we assume that they are honest, namely,
they will faithfully encrypt multi-dimensional range queries
into query tokens and send the query tokens to the cloud
as the query requests. In addition, we assume that the cloud
server does not collude with any query doctor due to conflicts
of interest. It is worth noting that other active attacks, e.g.,
impersonation, may be launched by adversaries. Since this
work focuses on privacy, those attacks are beyond the scope
of this paper, and will be discussed in our future work.

III. PRELIMINARIES

In this section, we recall R-tree data structure together with
the R-tree based multi-dimensional range query algorithm.

R-tree. R-tree is a classical tree index and can be used to
represent multi-dimensional dataset [21]. It is usually built by
recursively grouping nearby data records and using a minimum
bounding rectangle (MBR) to represent them. Specifically,
given a dataset D, we can represent it to an R-tree T with
internal nodes and leaf nodes. Each leaf node stores a multi-
dimensional data record x ∈ D, and each internal node stores
an MBR P and a set of child nodes, where P can cover all
data records of its child nodes.

R-tree based multi-dimensional range query. R-tree can
efficiently support multi-dimensional range queries. Let Q be
a query range and T be an R-tree. Then, we can search on T
for data records within Q. As described in Algorithm 1, the
query algorithm searches on T in a depth-first manner. Based

on the type of the current searched nodes, we consider two
cases in the query algorithm.
• Case 1: When the current node is a leaf node with the

data record x, we need to determine whether x
?
∈ Q. If x ∈ Q,

we put x into the query result, i.e., C = C ∪ {x}.
• Case 2: When the current node is an internal node with

an MBR P . We need to determine whether P ∩ Q ?
= ∅. If

P ∩Q 6= ∅, we continue to search its child nodes.

Algorithm 1 RQuery(Node node, Query range Q)
// Let C be the query result.

1: if node is a leaf node with x then
2: if x ∈ Q then
3: C = C ∪ {x};
4: if node is an internal node with P then
5: if P ∩Q 6= ∅ then
6: for each child node (i.e., child) of node do
7: RQuery(child, Q)
8: return C;

We can observe that R-tree based multi-dimensional range
queries have two basic operations, i.e., (i) point intersection:

determine whether x
?
∈ Q; and (ii) range intersection: deter-

mine P∩Q ?
= ∅. Meanwhile, the point intersection determina-

tion can be achieved by the range intersection determination.
Specifically, let x = (x1, x2, · · · , xd) be a data point and
Q = [q1,l, q1,r]×[q2,l, q2,r]×· · · [qd,l, qd,r] be a query range. If
we regard x as a range P = [x1, x1]× [x2, x2]×· · ·× [xd, xd],
determining x ∈ Q is equivalent to determine P ∩ Q 6= ∅.
Thus, in our scheme, we only focus on the implementation of
the multi-dimensional range intersection determination.

IV. BUILDING BLOCK TECHNIQUES

In this section, we first present our novel data comparison
algorithm and homomorphic encoding technique. Then, we
employ them to propose an encoding-based multi-dimensional
range intersection algorithm.

A. Data Comparison Algorithm

Our novel data comparison algorithm is used to efficiently
compare two non-negative integers p and q, where p, q ∈
{0, 1}n. The main idea is to represent p and q to vectors
such that we can compare them via an equality test over the
represented vectors. As shown in Algorithm 2, p and q can be
compared as follows.
• Step 1: We represent p to its binary representation, i.e.,

a1a2 · · · an = binary(p). For example, the binary representa-
tion of 5 is 101, i.e., binary(5) = 101. Based on a1a2 · · · an,
we construct 2n vectors {p̂i,pi}ni=1. Specifically, for each ai
(1 ≤ i ≤ n), we construct a pair of vectors p̂i and pi as

p̂i =

{
[1, 0] ai = 0

[0, 1] ai = 1
and pi =

{
[0, 1] ai = 0

[0, 0] ai = 1.
(2)
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• Step 2: Let the binary representation of q be b1b2 · · · bn.
Based on b1b2 · · · bn, we construct n vectors {qi}ni=1. Specif-
ically, for each bi (1 ≤ i ≤ n), we construct a vector qi as

qi =

{
[1, 0] bi = 0

[0, 1] bi = 1.
(3)

• Step 3: We compare p and q through the constructed
vectors {p̂i,pi}ni=1 and {qi}ni=1. Specifically, let fi(p, q) =
(
∏i−1
j=1 p̂jq

T
j ) ∗ piqTi and f(p, q) =

∑n
i=1 fi(p, q). We have

p < q ⇔ f(p, q) = 1; p ≥ q ⇔ f(p, q) = 0. (4)

Algorithm 2 Comparison(int p, int q)
1: a1a2 · · · an = binary(p); b1b2 · · · bn = binary(q);
2: for i = 1 to n do
3: if ai = 0 then
4: p̂i = [1, 0]; pi = [0, 1];
5: else
6: p̂i = [0, 1]; pi = [0, 0];
7: if bi = 0 then
8: qi = [1, 0];
9: else

10: qi = [0, 1];
11: f(p, q) =

∑n
i=1 fi(p, q) =

∑n
i=1((

∏i−1
j=1 p̂jq

T
j ) ∗ piqTi );

12: if f(p, q) = 1 then
13: return “p < q”;
14: else
15: return “p ≥ q”;

Theorem 1: The data comparison algorithm is correct.
Proof. The data comparison algorithm is correct iff Eq. (4)

is correct, which can be proved from three cases as follows.
Case 1: p < q. When p < q, there exists a k such that

ak < bk, and {ai = bi|i = 1, 2, · · · , k − 1}. From ak < bk,
we can deduce that ak = 0, and bk = 1. Moreover, we have

p̂kq
T
k =

[
1 0

] [0
1

]
= 0.

We further have
∑n
i=k+1((

∏i−1
j=1 p̂jq

T
j ) ∗ piqTi ) = 0 and

f(p, q) =

n∑
i=1

((

i−1∏
j=1

p̂jq
T
j ) ∗ piq

T
i ) =

k∑
i=1

((

i−1∏
j=1

p̂jq
T
j ) ∗ piq

T
i ).

From {ai = bi|i = 1, 2, · · · , k− 1}, we can deduce that ai =
bi = 0 or ai = bi = 1 for i = 1, 2, · · · , k − 1.
(1) When ai = bi = 0, we have

piq
T
i =

[
0 1

] [1
0

]
= 0; p̂iq

T
i =

[
1 0

] [1
0

]
= 1.

(2) When ai = bi = 1, we have

piq
T
i =

[
0 0

] [0
1

]
= 0; p̂iq

T
i =

[
0 1

] [0
1

]
= 1.

Thus, we can infer that piq
T
i = 0 and p̂iq

T
i = 1 for 1 ≤ i ≤

k − 1. Then, we have

f(p, q) =

k∑
i=1

((

i−1∏
j=1

p̂jq
T
j ) ∗ piq

T
i ) = (

k−1∏
j=1

p̂jq
T
j ) ∗ pkq

T
k = pkq

T
k .

Since ak < bk, we have ak = 0, bk = 1, and pkq
T
k =[

0 1
] [0

1

]
= 1. That is, f(p, q) = pkq

T
k = 1.

Case 2: p > q. When p > q, there exists a k such that
ak > bk, and {ai = bi|i = 1, 2, · · · , k − 1}. Similar to Case
1, we can deduce that f(p, q) = pkq

T
k . Since ak > bk, we

can deduce that ak = 1 and bk = 0. Then, we have pkq
T
k =[

0 0
] [1

0

]
= 0. That is, f(p, q) = pkq

T
k = 0.

Case 3: p = q. When p = q, we have {ai = bi}ni=1. Then,
we can deduce that piq

T
i = 0 and p̂iq

T
i = 1 for 1 ≤ i ≤ n.

We further have f(p, q) =
∑n
i=1((

∏i−1
j=1 p̂jq

T
j ) ∗ piqTi ) = 0.

Therefore, Eq. (4) is correct. �

B. Matrix Rank Attack on Extended Hill Cipher Encryption

In this subsection, we first recall the extended Hill cipher
encryption and then introduce the matrix rank attack on the
extended Hill cipher encryption.

Extended Hill Cipher Encryption. The Hill cipher [22] is
a matrix encryption technique that can encrypt a vector using
an inverse matrix. Based on the idea of the Hill cipher, an
extended Hill cipher encryption in [19] is utilized to protect
the data privacy, where a message matrix is encrypted by
an invertible matrix. Meanwhile, the extended Hill cipher
encryption can be further extended to encrypt a message with
two invertible matrices, which contains three algorithms, i.e.,
key generation, encryption, and decryption.
• KeyGen(d1, d2): Suppose the message matrix has the size

of d1 × d2. Then, in the key generation algorithm, we will
generate two random matrices M ∈ Rd1×d1 and W ∈ Rd2×d2
as the secret keys, where R denotes the real domain.
• Enc(P,M,W): A message matrix P with the size of

d1 × d2 can be encrypted as CTP = M−1 ∗P ∗W.
• Dec(CTP,M,W): The message matrix P underlying a

ciphertext CTP can be recovered as P = M ∗ CTP ∗W−1.
Matrix Rank Attack. The matrix rank attack is used

to obtain some information about the message matrix by
leveraging the rank of the encrypted matrix. Specifically, based
on the property of the matrix multiplication, we have

rank(CTP) = rank(M−1 ∗P ∗W) ≤ rank(P).

If P is a full rank matrix, i.e., rank(P) = min{d1, d2}, CTP

will be a full rank matrix with a high probability. Otherwise, if
P is not a full rank matrix, CTP must not be a full rank matrix.
In this case, if the domain of the ciphertext message is small,
the rank may leak the plaintext information. For example, if

a 5 × 7 matrix P is in the form of

pj O O
O pj O
O O Rj

, where

(i) pj is a 1 × 2 vector and is either [0, 0] or [0, 1]; and (ii)
Rj is a random 3 × 3 matrix. In this case, if we use the
extended Hill cipher encryption to encrypt P, rank(CTP)
will leak the plaintext of pj . Specifically, when pj = [0, 0],
rank(CTP) will be 3 with a high probability. When pj =
[1, 0], rank(CTP) will be 5 with a high probability. According
to the description of our scheme in Section V, if we directly
use the extended Hill cipher encryption to protect the privacy
for the computation of f(p, q) =

∑n
i=1((

∏i−1
j=1 p̂jq

T
j )∗piqTi ),
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the information of the plaintext, such as pj , will be leaked.
Therefore, we design a homomorphic encoding technique in
the next subsection to prevent the matrix rank attack on the
extend Hill cipher encryption.

C. Homomorphic Encoding Technique

The homomorphic encoding technique is designed for en-
coding data. Since it can encode the zero value to non-
zero random integers, we will use it as a building block to
prevent our PMRQ scheme from the matrix rank attack in
Subsection IV-B. Formally, the scheme can be defined as
ΠHE = (HE.Setup,HE.Encode,HE.Decode).
• HE.Setup(w) : On input an encoding parameter w, the

setup algorithm chooses a prime integer L ∈ {0, 1}w as the
encoding key. Then, it sets the message space asM = {m|0 ≤
m < L}. Finally, it outputs {L,M}.
• HE.Encode(L, m) : The encoding algorithm uses L to

encode a plaintext message m as Em = m + r ∗ L, where r

is a non-zero integer.
• HE.Decode(L, Em) : The decoding algorithm uses L to

decode an encoded value Em as m = Em mod L.
Correctness. The encoding technique is correct because Em

mod L = (m + r ∗ L) mod L = m (∵ 0 ≤ m < L).
Homomorphic properties. Given two encoding values Em1

and Em2 , they satisfy (i) homomorphic addition property: Em1 +
Em2 → Em1+m2 ; and (ii) homomorphic multiplication property:
Em1 ∗ Em2 → Em1∗m2 , where m1 + m2 < L and m1 ∗ m2 < L.

Vector encoding. By default, we encode a vector x =
(x1, x2, · · · , xd) by separately encoding each xi as

Ex = (Ex1
, Ex2

, · · · , Exd
). (5)

D. Encoding-based Range Intersection Algorithm

Based on the data comparison algorithm and encoding tech-
nique, we first introduce an encoding-based data comparison
algorithm, and then leverage it to design an encoding-based
multi-dimensional range intersection algorithm.
• Encoding-based data comparison algorithm. Given two

integers p and q, we can respectively represent them to 2n
vectors {p̂i,pi}ni=1 as Eq. (2) and n vectors {qi}ni=1 as
Eq. (3). Then, we can encode each p̂i, pi and qi into vectors
Ep̂i

, Epi
and Eqi as Eq. (5). Based on the homomorphic

properties of the encoding technique, we have Ef(p,q) =∑n
i=1((

∏i−1
j=1 Ep̂j

ETqj
) ∗ Epi

ETqi
). Then, we can deduce that{

f(p, q) = 1⇔ Ef(p,q) mod L = 1

f(p, q) = 0⇔ Ef(p,q) mod L = 0.

Based on Eq. (4), we further have{
p < q ⇔ Ef(p,q) mod L = 1

p ≥ q ⇔ Ef(p,q) mod L = 0.

• Encoding-based multi-dimensional range intersection
algorithm. Let P = P1×P2×· · ·×Pd andQ = Q1×Q2×· · ·×
Qd be two multi-dimensional ranges, where Pk = [pk,l, pk,r]
and Qk = [qk,l, qk,r). The encoding-based multi-dimensional

range intersection algorithm is to determine whether P ∩Q ?
=

∅. First, we have

P ∩Q 6= ∅ ⇔ Pk ∩Qk 6= ∅ for 1 ≤ k ≤ d
⇔ pk,r ≥ qk,l and pk,l < qk,r for 1 ≤ k ≤ d
⇔ f(pk,r, qk,l) = 0 and f(pk,l, qk,r) = 1 for 1 ≤ k ≤ d.

Let {sk, tk}dk=1 be 2d random non-zero integers. Then, with
a high probability, we have

P ∩Q 6= ∅

⇔
d∑

k=1

(sk ∗ f(pk,r, qk,l) + tk ∗ (f(pk,l, qk,r)− 1)) = 0

⇔
d∑

k=1

(
sk ∗

n∑
i=1

fi(pk,r, qk,l) + tk ∗
n∑

i=1

(
fi(pk,l, qk,r)−

1

n

))
= 0

⇔
d∑

k=1

n∑
i=1

(
sk ∗ fi(pk,r, qk,l) + tk ∗

(
fi(pk,l, qk,r)−

1

n

))
= 0.

Based on the encoding-based data comparison algorithm, we
have fi(pk,r, qk,l) = Efi(pk,r,qk,l) mod L and fi(pk,l, qk,r) =
Efi(pk,l,qk,r) mod L. We can deduce that

P ∩Q 6= ∅

⇔
d∑

k=1

n∑
i=1

(sk ∗ Efi(pk,r,qk,l)
+ tk ∗ (Efi(pk,l,qk,r)

−
1

n
)) mod L = 0.

Without loss of generality, let Efk,i(P,Q) = sk ∗Efi(pk,r,qk,l) +
tk ∗ (Efi(pk,l,qk,r) − 1

n ). We have

P ∩Q 6= ∅ ⇔
d∑

k=1

n∑
i=1

Efk,i(P,Q) mod L = 0. (6)

Remark. In the encoding-based data comparison al-
gorithm, determining P ∩ Q ?

= ∅ is implemented by
determining whether

∑d
k=1

∑n
i=1 Efk,i(P,Q) mod L

?
= 0.

Based on our derivation, when P ∩ Q ?
= ∅, we

must have
∑d
k=1

∑n
i=1 Efk,i(P,Q) mod L = 0. However,∑d

k=1

∑n
i=1 Efk,i(P,Q) is an integer modulo L. Even if

P ∩ Q 6= ∅, there is still a probability such that∑d
k=1

∑n
i=1 Efk,i(P,Q) = 0. Since

∑d
k=1

∑n
i=1 Efk,i(P,Q) is

in the range of [0, L− 1], the probability will be 1
L

. When L

is large, the probability is negligible.

V. OUR PROPOSED PMRQ SCHEME

In this section, we propose our PMRQ scheme. Before intro-
ducing the details, we first present a multi-dimensional range
intersection predicate encryption (MRIPE) scheme, which
serves as the key component of our PMRQ scheme.

A. MRIPE Scheme

The MRIPE scheme is designed to privately determine
whether P∩Q ?

= ∅. The main idea is to encrypt P andQ into a
ciphertext CTP and a token TKQ such that we can determine
P ∩ Q ?

= ∅ through CTP and TKQ. Based on Eq. (6), we
have P ∩ Q 6= ∅ ⇔

∑d
k=1

∑n
i=1 Efk,i(P,Q) mod L = 0. If

we choose some random numbers {{zk,i}ni=1}dk=1 satisfying∑d
k=1

∑n
i=1 zk,i = 0, we have

∑d
k=1

∑n
i=1(Efk,i(P,Q) +
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zk,i) =
∑d
k=1

∑n
i=1 Efk,i(P,Q). In our scheme, we decompose

the problem of computing
∑d
k=1

∑n
i=1 Efk,i(P,Q) into that of

computing each Efk,i(P,Q) + zk,i for 1 ≤ k ≤ d and 1 ≤ i ≤
n. It is worth noting that random numbers {{zk,i}ni=1}dk=1

contribute to preserving the single-dimensional privacy be-
cause they can be canceled only all of them are summed
together. Meanwhile, since we have represented {P,Q}
to vectors, we employ the matrix encryption to preserve
the privacy of the MRIPE scheme. Formally, the MRIPE
scheme ΠMRIPE = (MRIPE.KeyGen,MRIPE.RangeEnc,
MRIPE.TokenGen,MRIPE.RangeEval) is defined as follows.
• MRIPE.KeyGen(d, n, w) : Let d be the number of

dimensions in {P,Q}, n be the bit length of values in
{P,Q}, and w be an encoding parameter. The key gen-
eration algorithm generates a set of invertible matrices
{{{Mk,i,j ,Wk,i,j}ij=1}ni=1}dk=1 as the secret key sk, where
Mk,i,j ∈ R5×5 and Wk,i,j ∈ R7×7. Then, it generates an
encoding key as L← HE.Setup(w).
• MRIPE.RangeEnc(sk, L,P = P1 × P2 × · · · × Pd) : The

range encryption algorithm encrypts a range P as follows.
Step 1: For each range Pk = [pk,l, pk,r], we represent

pk,l to 2n vectors {p̂k,l,i,pk,l,i}ni=1 and pk,r to 2n vectors
{p̂k,r,i,pk,r,i}ni=1 as Eq. (2). For each p̂k,l,i, pk,l,i, p̂k,r,i and
pk,r,i, we use L to encode them into vectors Ep̂k,l,i

, Epk,l,i
,

Ep̂k,r,i
, and Epk,r,i

as Eq. (5).
Step 2: We use the encoded vectors {{Ep̂k,l,i

, Epk,l,i
, Ep̂k,r,i

,

Epk,r,i
}ni=1}dk=1 to construct some vectors and matrices.

(1) We choose 4d non-zero random integers {sPk , tPk , sP
′

k ,
tP

′

k }dk=1 and d ∗ n random real numbers {{zPk,i, zP
′

k,i}ni=1}dk=1,
where

∑d
k=1

∑n
i=1(zPk,i + zP

′

k,i) = 0.
(2) For each pair (k, i), we construct a vector γk,i and i

matrices {Pk,i,j}ij=1 as

γk,i =
[
sPk,i,0 uPk,i,0 vPk,i,0 zPk,i,0 1

]
;

Pk,i,j =


sPk,i,j ∗ Ep̂k,r,j

O O O O

O uPk,i,j ∗ Ep̂k,l,j
O O O

O O vPk,i,j O O

O O O zPk,i,j O

O O O O 1


for 1 ≤ j ≤ i− 1;

Pk,i,i =


sPk,i,i ∗ Epk,r,i

O O O O

O uPk,i,i ∗ Epk,l,i
O O O

O O vPk,i,i O O

O O O zPk,i,i O

O O O O 1

 ,

where {sPk,i,j , uPk,i,j , vPk,i,j , zPk,i,j}ij=0 are random numbers and
satisfy

i∏
j=0

sPk,i,j = sPk ;

i∏
j=0

uPk,i,j =

i∏
j=0

vPk,i,j = tPk ;
i∏

j=0

zPk,i,j = zPk,i.

(3) For each pair (k, i), we construct a vector γ′k,i and i
matrices {P′k,i,j}ij=1. The constructing approach is the same
as that of γk,i and {Pk,i,j}ij=1. Differently, the chosen random
numbers are {sP′

k,i,j , u
P′

k,i,j , v
P′

k,i,j , z
P′

k,i,j}ij=0 and satisfy

i∏
j=0

sP
′

k,i,j = sP
′

k ;

i∏
j=0

uP
′

k,i,j =

i∏
j=0

vP
′

k,i,j = tP
′

k ;

i∏
j=0

zP
′

k,i,j = zP
′

k,i.

Step 3: We encrypt γk,i, γ
′
k,i, Pk,i,j and P′k,i,j as{

CTγk,i
= γk,iMk,i,1; CTPk,i,j = M−1

k,i,jPk,i,jWk,i,j ;

CTγ′
k,i

= γ′k,iMk,i,1; CTP′
k,i,j

= M−1
k,i,jP

′
k,i,jWk,i,j .

Finally, the algorithm outputs the ciphertext CTP =
{{CTγk,i

,CTγ′
k,i
, {CTPk,i,j

,CTP′
k,i,j
}ij=1}ni=1}dk=1.

• MRIPE.TokenGen(sk, L,Q = Q1×Q2×· · ·×Qd) : The
token generation algorithm encrypts a query range Q into a
query token as follows.

Step 1: For each Qk = [qk,l, qk,r), we respectively represent
qk,l and qk,r to n vectors {qk,l,i}ni=1 and n vectors {qk,r,i}ni=1

as Eq. (3). For each qk,l,i and qk,r,i, we use L to encode them
into new vectors Eqk,l,i

and Eqk,r,i
as Eq. (5).

Step 2: We use the encoded vectors {{Eqk,l,i
,

Eqk,r,i
}ni=1}dk=1 to construct some vectors and matrices.

(1) We choose 4d non-zero random integers
{sQk , t

Q
k , s

Q′

k , tQ
′

k }dk=1 and d ∗ n random numbers {{zQk,i,
zQ

′

k,i}ni=1}dk=1, where
∑d
k=1

∑n
i=1(zQk,i + zQ

′

k,i) = 0.
(2) For each pair (k, i), we construct i − 1 matrices
{Qk,i,j}i−1

j=1 and a vector βk,i as

Qk,i,j =


sQk,i,j ∗ E

T
qk,l,j

O O O O

O uQk,i,j ∗ E
T
qk,r,j

O O O

O O vQk,i,j O O

O O O 1 O

O O O O zQk,i,j


for 1 ≤ j ≤ i− 1;

βk,i =
[
sQk,i,i ∗ E

T
qk,l,i

uQk,i,i ∗ E
T
qk,r,i

−vQk,i,i ∗
1
n

1 zQk,i,i

]T
,

where {sQk,i,j , u
Q
k,i,j , v

Q
k,i,j , z

Q
k,i,j}ij=1 are random numbers and

satisfy
i∏

j=1

sQk,i,j = sQk ;

i∏
j=1

uQk,i,j =

i∏
j=1

vQk,i,j = tQk ;

i∏
j=1

zQk,i,j = zQk,i.

(3) For each pair (k, i), we further construct i− 1 matrices
{Q′k,i,j}

i−1
j=1 and a vector β′k,i. The constructing approach

is the same as that of {Qk,i,j}i−1
j=1 and βk,i. Differently,

the chosen random numbers are {sQ
′

k,i,j , u
Q′

k,i,j , v
Q′

k,i,j , z
Q′

k,i,j}ij=1
and satisfy

i∏
j=1

sQ
′

k,i,j = sQ
′

k ;
i∏

j=1

uQ
′

k,i,j =
i∏

j=1

vQ
′

k,i,j = tQ
′

k ;
i∏

j=1

zQ
′

k,i,j = zQ
′

k,i.

Step 3: We encrypt Qk,i,j , Q′k,i,j , βk,i and β′k,i as{
TKQk,i,j = W−1

k,i,jQk,i,jMk,i,j+1; TKβk,i
= W−1

k,i,iβk,i;

TKQ′
k,i,j

= W−1
k,i,jQ

′
k,i,jMk,i,j+1; TKβ′

k,i
= W−1

k,i,iβ
′
k,i.

Finally, the algorithm outputs the query token TKQ =
{{{TKQk,i,j

,TKQ′
k,i,j
}i−1
j=1,TKβk,i

,TKβ′
k,i
}ni=1}dk=1.

•MRIPE.RangeEval(L,CTP ,TKQ) : In the range intersec-
tion evaluation algorithm, on input the ciphertext CTP and the
token TKQ, we first compute

CTEfk,i(P,Q)
= CTγk,i

(

i−1∏
j=1

CTPk,i,j
TKQk,i,j

)CTPk,i,i
TKβk,i

+ CTγ′
k,i

(

i−1∏
j=1

CTP′
k,i,j

TKQ′
k,i,j

)CTP′
k,i,i

TKβ′
k,i

.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:37:24 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3158321, IEEE Internet of
Things Journal

7

Then, we compute CTEf(P,Q)
=
∑d
k=1

∑n
i=1 CTEfk,i(P,Q)

. If
CTEf(P,Q)

mod L = 0, the algorithm returns 1 to denote “P ∩
Q 6= ∅”. Otherwise, it returns 0 to denote “P ∩Q = ∅”.

Correctness. We prove the correctness of the MRIPE
scheme as follows. First, it is easy to deduce that

CTEfk,i(P,Q)

= (sPk ∗ sQk + sP
′

k ∗ sQ
′

k ) ∗ Efi(pk,r,qk,l) + (tPk ∗ tQk + tP
′

k ∗ tQ
′

k )∗

(Efi(pk,l,qk,r) −
1

n
) + zPk,i + zQk,i + zP

′
k,i + zQ

′

k,i.

Let sPk ∗ s
Q
k + sP

′

k ∗ s
Q′

k
∆
= sk, tPk ∗ t

Q
k + tP

′

k ∗ t
Q′

k
∆
= tk, and

zPk,i + zQk,i + zP
′

k,i + zQ
′

k,i
∆
= zk,i. We can deduce that

CTEfk,i(P,Q)
= sk ∗ Efi(pk,r,qk,l) + tk ∗ (Efi(pk,l,qk,r) −

1

n
) + zk,i

= Efk,i(P,Q) + zk,i.

Since
∑d
k=1

∑n
i=1 zk,i =

∑d
k=1

∑n
i=1(zPk,i + zQk,i + zP

′

k,i +

zQ
′

k,i) = 0, we further have

d∑
k=1

n∑
i=1

CTEfk,i(P,Q)
=

d∑
k=1

n∑
i=1

(Efk,i(P,Q) + zk,i) =
d∑

k=1

n∑
i=1

Efk,i(P,Q).

Based on Eq. (6), we have
d∑

k=1

n∑
i=1

CTEfk,i(P,Q)
mod L = 0

⇔
d∑

k=1

n∑
i=1

Efk,i(P,Q) mod L = 0⇔ P ∩Q 6= ∅.

As a result, the MRIPE scheme is correct.
Remark. Our MRIPE scheme is a probabilistic encryption

scheme since the ciphertexts and query tokens are generated
by involving many random numbers.

B. Description of the PMRQ Scheme

Based on the MRIPE scheme, we introduce our PMRQ
scheme in detail, which can be defined as follows.
• PMRQ.KeyGen(d, n, w): In the key generation algorithm,

the HC first runs MRIPE.KeyGen(d, n, w) to generate a secret
key and an encoding key {sk, L} ← MRIPE.KeyGen(d, n, w).
Then, it generates an access key K for the AES algorithm.
Finally, the HC publishes L and sends {sk,K} to query
doctors as the authorized key.
• PMRQ.Enc(sk, L,K,D = {xi}Ni=1): In the encryption

algorithm, the HC encrypts its dataset D = {xi}Ni=1 as follows.
Step 1: The HC builds an R-tree T for the dataset D. Then,

it encrypts the R-tree T. Specifically, for each internal node
with an MBR P , it encrypts P into a ciphertext CTP as

CTP ← MRIPE.RangeEnc(sk, L,P).

For each leaf node with a record xi = (xi,1, xi,2, · · · , xi,d),
the HC represents xi to a range Pxi

= [xi,1, xi,1] ×
[xi,2, xi,2] × · · · × [xi,d, xi,d]. Then, it encrypts Pxi into two
ciphertexts {CTxi ,AESK(xi)}, where

CTxi
← MRIPE.RangeEnc(sk, L,Pxi

).

Step 2: The HC sends the encrypted R-tree, denoted as
E(T), to the cloud server.

• PMRQ.TokenGen(sk, L,Q): Given a query range Q, the
query doctor first generates a query token TKQ as

TKQ ← MRIPE.TokenGen(sk, L,Q).

Then, it sends the query token TKQ to the cloud server.
• PMRQ.Query(L, E(T),TKQ): In the query algorithm,

the cloud server uses the token TKQ to search on
E(T) for records within Q. The algorithm is similar
to that over the plaintext R-tree in Algorithm 1. Differ-
ently, the conditions x ∈ Q and P ∩ Q 6= ∅ are
replaced with MRIPE.RangeEval(L,CTx,TKQ) = 1 and
MRIPE.RangeEval(L,CTP ,TKQ) = 1, respectively. Fi-
nally, the cloud returns the result Ccipher = {AESK(xi)|
MRIPE.RangeEval(L,CTxi

,TKQ) = 1} to the query doctor.
On receiving Ccipher, the query doctor recovers each xi with
the access key K by decrypting AESK(xi) ∈ Ccipher.

VI. SECURITY ANALYSIS

In this section, we show that our PMRQ scheme is privacy-
preserving. Since the PMRQ scheme is designed based on the
MRIPE scheme, we first prove the MRIPE scheme’s security.

A. Security of MRIPE Scheme

Since the MRIPE scheme is a searchable encryption scheme,
we prove its security under the real/ideal worlds model [23].
In the real world, the views of the adversary are cipher-
texts and tokens generated by the MRIPE scheme. In the
ideal world, the views of the adversary are ciphertexts and
tokens generated by a simulator with the MRIPE scheme’s
leakage function. Before formalizing the ideal world, we first
define the leakage function of our MRIPE scheme. Given
two ranges P and Q, the leakage function is L(P,Q) =
MRIPE.RangeEval(L,CTP ,TKQ). Next, we formalize the
ideal world.

Ideal world. In the ideal world, a probabilistic polynomial-
time (PPT) adversary A interacts with a simulator having
the leakage L, and the simulator simulates the view of A
in our MRIPE scheme. Based on the interaction of A and
the simulator, the ideal world includes four stages, i.e., key
generation, token generation stage 1, challenge stage, and
token generation stage 2, where the token generation stage and
challenge stage are respectively used for simulating the token
generation algorithm and encryption algorithm of the MRIPE
scheme. The reason why we have two token generation stages
is that query users can continuously generate query tokens in
our PMRQ scheme. Specifically, the four stages in the ideal
world can be formally defined as follows.
• Key generation: A sends a random range P to the

simulator. When the simulator receives P , it randomly chooses
a ciphertext CT′P for it.
• Token generation stage 1: A sends δ1 query ranges
{Qi}δ1i=1 to the simulator. When the simulator receives
{Qi}δ1i=1, for each Qi, it uses the leakage L to randomly
generate a query token TK′Qi

such that{
CTEf(P,Qi)

mod L = 0 if L(P,Qi) = 1

CTEf(P,Qi)
mod L 6= 0 if L(P,Qi) = 0.
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Finally, it returns these tokens {TK′Qi
}δ1i=1 to A.

• Challenge stage: The simulator in the challenge stage
sends CT′P to A.
• Token generation stage 2: A follows the token generation

stage 1 to choose δ2 − δ1 query ranges {Qi}δ2i=δ1+1 and get
their query tokens {TK′Qi

}δ2i=δ1+1 from the simulator.
In the ideal world, A’s views are {CT′P , {TK′Qi

}δ2i=1}. In
the real world, A’s views are {CTP , {TKQi}

δ2
i=1} that are

generated by the MRIPE scheme. Based on these views, we
formalize the security of the MRIPE scheme.

Definition 1 (Security of MRIPE scheme.): The MRIPE
scheme is selectively secure with the leakage L iff for any PPT
adversary issuing a polynomial number of query tokens, there
exists a simulator such that the probability that the adversary
can distinguish the views of real and ideal worlds is negligible.

Theorem 2: MRIPE scheme is selectively secure with L.
Proof. Based on Definition 1, the MRIPE scheme is se-

lectively secure with L iff the probability that A can distin-
guish the views of real and ideal worlds is negligible. Since
the ciphertexts and tokens in the ideal world are randomly
chosen, distinguishing the views of real and ideal worlds is
equivalent to distinguishing the ciphertexts and tokens in the
real world, i.e., {CTP , {TKQi

}δ2i=1}, from random ciphertexts
and tokens. Next, we show that A cannot distinguish them.

First, A cannot separately distinguish CTP from ran-
dom ciphertexts and distinguish {TKQi

}δ2i=1 from ran-
dom tokens. This is because CTP = {{CTγk,i

,

CTγ′
k,i
, {CTPk,i,j

,CTP′
k,i,j
}ij=1}ni=1}dk=1, and each cipher-

text in CTP contains many random numbers and secret
matrices. Then, the unknownness of random numbers and
secret matrices can guarantee that A cannot distinguish CTP
from random ciphertexts. Similarly, A also cannot distinguish
{TKQi

}δ2i=1 from random tokens. Second, A may try to dis-
tinguish {CTP , {TKQi}

δ2
i=1} by combining CTP and TKQi .

This is because when computing CTEf(P,Qi)
, the secret matri-

ces can be canceled. That is, CTEf(P,Qi)
=
∑d
k=1

∑n
i=1((sPk ∗

sQi

k + sP
′

k ∗ s
Q′

i

k ) ∗ fi(pk,r, qk,l) + (tPk ∗ t
Qi

k + tP
′

k ∗ t
Q′

i

k ) ∗
(fi(pk,l, qk,r) − 1

n )). However, even if secret matrices are
canceled, the computed CTEf(P,Qi)

still contains random num-

bers {sPk ∗ s
Qi

k + sP
′

k ∗ s
Q′

i

k , tPk ∗ t
Qi

k + tP
′

k ∗ t
Q′

i

k }, which
ensure that A cannot distinguish CTEf(x,Qi)

from a random
number. Hence, A cannot distinguish {CTP , {TKQi

}δ2i=1}
from random ciphertexts and tokens, and the MRIPE scheme
is selectively secure with the leakage L. �

B. Security of PMRQ Scheme

We show that the PMRQ scheme can protect the privacy
of HC’s dataset and doctors’ query requests; and the single-
dimensional privacy of range queries.
• HC’s dataset and doctors’ query requests are privacy-

preserving. First, since the HC’s dataset is encrypted by the
MRIPE scheme and AES algorithm, the security of the MRIPE
scheme and AES algorithm can guarantee that the cloud server
cannot obtain the plaintext of the dataset. Second, since each
query range Q in query requests is encrypted by the MRIPE

scheme, the security of the MRIPE scheme can prevent the
cloud server from knowing the plaintext of the query requests.
Therefore, the privacy of HC’s dataset and doctors’ query
requests can be preserved.
• Single-dimensional privacy of range queries is protected.

In the PMRQ scheme, the range queries are processed through
the MRIPE scheme. If the MRIPE scheme can protect the
single-dimensional privacy, the PMRQ scheme can protect the
single-dimensional privacy. In the MRIPE scheme, determin-
ing P ∩Q ?

= ∅ is to compute CTEfk,i(P,Q)
= (sPk ∗ s

Q
k + sP

′

k ∗
sQ

′

k ) ∗ Efi(pk,r,qk,l) + (tPk ∗ t
Q
k + tP

′

k ∗ t
Q′

k ) ∗ (Efi(pk,l,qk,r) −
1
n ) + (zPk,i + zP

′

k,i + zQk,i + zQ
′

k,i). Since {zPk,i, zP
′

k,i, z
Q
k,i, z

Q′

k,i}
are random numbers and can be canceled only when all of
them are summed together for 1 ≤ k ≤ d and 1 ≤ i ≤ n,
i.e.,

∑d
k=1

∑n
i=1(zPk,i + zP

′

k,i + zQk,i + zQ
′

k,i) = 0, these random
numbers can preserve the single-dimensional privacy of the
multi-dimensional range intersection. Therefore, the single-
dimensional privacy of range queries can also be preserved.

VII. PERFORMANCE EVALUATION

We evaluate the computational costs of our PMRQ scheme
and compare our scheme with other range query schemes.

Experimental setting. We implemented our PMRQ scheme
and the compared schemes in Java and conducted experiments
on a machine with Intel(R) Xeon(R) CPU E5-2650 v4, 64GB
RAM and Ubuntu 16.04 operating system. The evaluation
dataset is a real Cardiovascular Disease dataset [24]. We take
10000 records with 5 attributes from this dataset to perform
the evaluation. We set the encoding key to be a prime number
L = 997 and the length of the access key to be 256 bits.

A. Computational Costs of PMRQ Scheme

We theoretically and experimentally analyze the computa-
tional costs of our scheme for dataset encryption, query token
generation, and query processing.
• Dataset encryption: The computational costs of encrypt-

ing a dataset are mainly from encrypting the R-tree. Since
encrypting a d-dimensional data point x or a range P requires
O(d ∗ n2) computational costs and the number of nodes in
R-tree is O(N), the computational costs of dataset encryption
are O(N ∗d∗n2), where d is the number of dimensions in the
dataset, N is the size of the dataset, and n is the bit length of
the dataset’s values. In Fig. 2(a) and Fig. 2(b), we depict the
experimental results on how the running time of the dataset
encryption varies with {N,n} and {d, n} under the setting of
d = 4 and N = 5000, respectively. These figures demonstrate
that the runtime of dataset encryption linearly rises with N
and d. Meanwhile, it shows a quadratic increase trend with n.
This is because the increase of N will result in a larger R-tree,
and the increase of d and n will result in higher computational
costs in encrypting the internal nodes and leaf nodes of the
R-tree.
• Token generation: The computational costs of generating

a query token is about O(d ∗ n2). In Fig. 3(a), we depict the
experimental result on how the runtime of token generation
varies with d and n. This figure shows that the runtime of
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Fig. 2. Runtime of dataset encryption

token generation grows as d and n become larger. This is
because the increase of d will result in the growing number of
ciphertexts in the query token, and the increase of n will result
in the growing size of each ciphertext in the query token.
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Fig. 3. Runtime of token generation and intersection determination

• Query processing: The computational costs of query
processing are affected by the number of searched nodes in
R-tree and the computational costs of searching each node.
When the number of records in the query results is |C|, the
average number of searched nodes is about O(|C| ∗ logN).
Meanwhile, the computational costs of searching each node
are about O(d ∗ n2). Hence, the computational costs of range
query processing are about O(|C| ∗ logN ∗ d ∗ n2). Next, we
present how the runtime of searching each node changes with
d and n. Then, we present how the runtime of query processing
changes with {N,n} and {d, n}, respectively.

In Fig. 3(b), we plot the runtime of searching each node
(i.e., point/range intersection operation) varying with d and n.
The figure shows that the runtime has a linear growth trend
with d and a quadratic increase trend with n. Meanwhile,
the overall runtime is low, e.g., determining an intersection
relationship for two 5-dimensional ranges with 10-bit values
only takes about 4.91 ms. In Fig. 4(a), we depict the runtime
of query processing with N and n under the setting of (i)
d = 4; and (ii) the size of query results is less than 3. This
figure demonstrates the runtime logarithmically rises with N
and quadratically grows with n. In Fig. 4(b), we depict the
runtime of query processing with d and n under the setting of
(i) N = 5000; and (ii) the size of query results is less than 8.
The figure shows that the runtime rises with d and n. This is

because the increase of N will result in a higher R-tree, and
the increase of d and n will result in a growing computational
costs of evaluating the internal nodes and leaf nodes of the
R-tree. In addition, the relationship between the runtime and
d is not linear. This is because the increase of d will result
in the change of R-tree structure, which makes the runtime of
range queries increase.
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Fig. 4. Runtime of the range query processing

B. Performance Comparison

As shown in TABLE I, we compare our PMRQ scheme
with some existing multi-dimensional range query schemes
with respect to the search efficiency, query privacy, single-
dimensional privacy, and the number of employed cloud
servers. This table shows that only our scheme and TRQED+
[13] can achieve multi-dimensional range queries with faster
than linear search efficiency, query privacy, and single-
dimensional privacy. Meanwhile, Maple [9] is also a repre-
sentatives among existing schemes because it only leaks the
query privacy. Therefore, we compare our scheme with Maple
and TRQED+.

TABLE I
COMPARISON AMONG EXISTING SCHEMES

Scheme
Faster

than linear
search

Query
privacy

Single-
dimensional

privacy

#Cloud
servers

Boneh et al’s scheme [7] × ×
√

Single
MRQED [8] ×

√ √
Single

Maple [9]
√

×
√

Single
LSED [10]

√ √
× Single

Wang et al. scheme [11]
√ √

× Single
Mei et al. scheme [12]

√ √
× Single

TRQED+ [13]
√ √ √

Two
Our PMRQ

√ √ √
Single

In our experiment, we implemented Maple and TRQED+
in Java. For the Maple scheme, it was designed based on the
bilinear pairing, and we set the security parameter to κ = 512.
For the TRQED+ scheme, except for the single-dimensional
privacy, it also employ a flag label to preserve the access
pattern privacy, which takes additional computational costs. To
be fair, the implemented TRQED+ scheme has removed the
flag label. In Fig. 5, we depict the experimental results on how
the runtime of range queries processing varies with N under
the setting of d = 4. Meanwhile, the bit length of values in
the dataset is set to 10, i.e., n = 10. The average size of query
results is less than 3. The figure shows that the computational
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costs of range queries processing in our scheme, Maple,
and TRQED+ increase with N . Meanwhile, our scheme and
TRQED+ are more efficient than the Maple scheme. Although
our scheme is not as efficient as the TRQED+ scheme, it is
designed in a single-server model and more practical than the
two-server model based TRQED+ scheme.

2000 4000 6000 8000 10000

102

104

106

Our Scheme
Maple
TRQED+

Fig. 5. Comparison of the range query efficiency

VIII. RELATED WORKS

Privacy-preserving queries over encrypted data have been
widely studied in various areas, e.g., vehicle network [25], [26]
and eHealthcare [5]. Since we focus on the multi-dimensional
range queries over encrypted data in this work, we will review
some existing schemes closely related to our work.

Boneh et al. [7] introduced a bilinear pairing based hidden
vector encryption scheme that is applicable to achieve privacy-
preserving multi-dimensional range queries. However, it has
a linear search efficiency with the dataset’s size and cannot
preserve the query privacy. To speed up range queries, Shi et
al. [8] proposed the MRQED scheme based on an anonymous
identity-based encryption (AIBE) scheme [27]. Although the
MRQED scheme is more efficient than Boneh et al.’s scheme,
it is still inefficient due to the linear search efficiency and
computationally expensive public-key based AIBE scheme. To
make the query efficiency sublinear to the size of the dataset,
Wang et al. [9] proposed the Maple scheme by building an
R-tree for the multi-dimensional range queries and applying
the hidden vector encryption in [7] to preserve the single-
dimensional privacy. Same as Boneh et al.’s scheme, the Maple
scheme cannot preserve the query privacy.

Lu et al. [10] presented an LSED scheme by indexing
the dataset in each dimension to a B+tree and applying an
inner product predicate encryption [28] to preserve the data
privacy. Since the proposed scheme separately processes the
range queries of each dimension, it inevitably leaks the single-
dimensional privacy. Wang et al. [11] indexed the multi-
dimensional dataset using an R̂-tree and preserved the data
privacy using an asymmetric scalar-product encryption (ASPE)
[29] technique. Similar to LSED [28], the proposed scheme
cannot preserve the single-dimensional privacy. Mei et al. [12]
designed a multi-dimensional range query scheme based on an
interval tree, but this scheme leaks the single-dimensional pri-
vacy. Recently, Yang et al. [13] proposed a TRQED+ scheme
under the two-server model. With the help of two servers,
all dimensions of range queries can be randomly permutated.

Thus, the single-dimensional privacy can be preserved. How-
ever, TRQED+ was designed based on the two-server model
and is secure under the non-collusive assumption between
two servers. Since the non-collusive assumption is impractical
in some scenarios, especially those with sensitive data, the
TRQED+ scheme is impractical. In addition, some schemes
[14], [15] were proposed based on the bucketization method,
but the query results may contain false positive records. Mean-
while, some order-preserving encryption schemes [30], [31]
are applicable to implement multi-dimensional range queries,
but they suffer from the ordered chosen plaintext attack [32].

Different from the above works, our PMRQ scheme is
designed under a single-server model and can simultane-
ously preserve the data privacy, query privacy, and single-
dimensional privacy.

IX. CONCLUSION

In this paper, we have proposed an efficient and privacy-
preserving multi-dimensional range query scheme under a
single-server setting, which can achieve the faster than linear
search efficiency, preserve the query privacy, and protect
the single-dimensional privacy. First, we designed a data
comparison algorithm and a homomorphic encoding tech-
nique. Based on them, we designed an encoding-based multi-
dimensional range intersection algorithm. Then, we intro-
duced a multi-dimensional intersection predicate encryption
(MRIPE) scheme by applying matrix encryption to preserve
the privacy of the encoding-based multi-dimensional range
intersection algorithm. Finally, based on the MRIPE scheme,
we proposed our PMRQ scheme under a single-serve model.
In our future works, we will explore other coding and en-
cryption techniques to design more efficient multi-dimensional
range query schemes. Meanwhile, we plan to design some
efficient and privacy-preserving multi-dimensional range query
schemes supporting efficient dynamic updates of the dataset
and even protecting the access pattern privacy of the dataset.
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